

Automotive Pollution: Causes and Remedies

Sonia Vatta¹ and Harbir Singh²

¹Department of Computer Science Engineering, Rayat Bahra University, Mohali - 140 104, India ²Department of Mechanical Engineering, Rayat Bahra University, Mohali-140103, India

Abstract: Automotive pollution is one of the biggest challenges of our time, posing a serious threat to ecosystems, human health, and the planet's sustainability. Automotive sector plays a key role in contributing to environmental degradation. The automotives produce air, water, land, and even noise pollution. Automotive pollution disrupts natural systems and leads to severe consequences like climate change, biodiversity loss, and widespread diseases. Understanding the types of automotive pollution, their causes, and implementing effective remedies is crucial to mitigating its impact and safeguarding our environment for future generations. This work explores the major types of automotive pollution, their causes, and actionable remedies to address this global crisis. This work will open the ways for further investigations in the field.

Keywords: Automotive, Pollution, Environment, Sustainability, Transportation, Vehicles, Technology, Emission, Climate, Air, Water, Noise, Land

RBIJMR

RBIJMR-Rayat Bahra International Journal of Multidisciplinary Research, Vol. 05, Issue 01, June 2025

1. Introduction

The automotive industry has revolutionized modern transportation, enabling fast efficient travel. However, it has also become one of the leading contributors to environmental pollution. Automotive pollution contributes significant threats to the environment and human health. It produces various pollutants like carbon monoxide, hydrocarbons and nitrogen oxides, which impact health and result in climate change [1]. The vehicle emissions cause global warming, acid rain, soil contamination and water pollution. The exposure to vehicle emissions can lead to respiratory issues, heart diseases, eye problems, headaches, skin rashes and fatigue. The automotive pollution needs serious concerns and to be addressed properly to save the environment and for the wellness of human beings. Understanding the causes of automotive pollution and exploring potential remedies is essential for building a sustainable future [2].

Automotive pollution remains a pressing environmental issue. With the help of technological innovations, policy interventions, and public awareness, we can mitigate its impacts. Transitioning to cleaner vehicles, improving urban infrastructure, and adopting sustainable behaviors are crucial steps toward a greener future. The control of vehicle emission, use of alternative fuels, proper check on vehicles, alternative means of transportation etc.

can be the solutions to the automotive pollution [3]. In the next section, different types of automotive pollution, their primary causes and corresponding remedies will be covered.

2. Types of Automotive Pollution

Automotives give rise to different kinds of pollution which includes air, noise, water, and land pollution. Different types of automotive pollution with their causes and remedies are given below.

2.1 Air Pollution from Vehicle Emissions

Causes

- Exhaust Emissions: Cars and trucks emit pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and particulate matter (PM), which contribute to smog, acid rain, and global warming.
- Fossil Fuel Consumption: The burning of gasoline and diesel fuel releases large amounts of Carbon Dioxide (CO₂), a greenhouse gas that accelerates climate change [4].

Remedies

• Transition to Electric Vehicles (EVs):
EVs produce zero tailpipe emissions, which
helps reduce air pollution.

- Adoption of Hybrid Vehicles: These vehicles combine an internal combustion engine with an electric motor, reducing the use of fossil fuels and emissions [5].
- Improved Fuel Quality: Use of cleaner fuels, such as low-sulfur gasoline and biodiesel, can reduce the harmful pollutants emitted from vehicles.
- Stringent Emission Standards:
 Governments should enforce strict
 emission norms for vehicles (e.g., Euro 6
 standards) and conduct regular emissions
 testing.
- Promotion of Public Transport and Car Pooling: Reducing the number of vehicles on the road helps lower emissions.

2.2 Noise Pollution

Causes

- Traffic Noise: High traffic density leads to increased noise from engines, tires, and horns, contributing to urban noise pollution.
- **Vehicle Design:** Loud engines, particularly in older or poorly maintained vehicles, increase the level of noise pollution [6].

Remedies

Development of Quieter Vehicles:
 Manufacturers should design quieter
 engines and improve noise reduction

- technologies, such as advanced mufflers and soundproofing [7].
- **Traffic Management:** Implementing better urban planning and traffic flow systems to reduce congestion and noise levels.
- Use of Electric Vehicles (EVs): EVs operate much more quietly than traditional combustion engine vehicles, reducing noise pollution [8].
- Regulation of Noise Levels: Governments
 can set legal limits for noise produced by
 vehicles and enforce compliance through
 periodic inspections.

2.3 Land Pollution (Waste Generation)

Causes

- Vehicle Disposal: Old vehicles that are not properly disposed can leak hazardous fluids like oil, coolant, and battery acid, contaminating the land.
- Tires and Plastic Waste: Tires and plastic materials used in vehicles, such as bumpers and dashboards, contribute to non-biodegradable waste when discarded improperly [9].

Remedies

 Recycling Programs: Establishing vehicle recycling programs to recover valuable materials (metals, plastics, rubber) from old

vehicles and prevent harmful substances

from entering landfills.

- Proper Disposal of Waste: Establishing proper disposal and treatment methods for automotive fluids and hazardous waste.
- Use of Biodegradable Materials: Encouraging the automotive industry to use eco-friendly, recyclable, or biodegradable materials in vehicle manufacturing [10].

2.4. Water Pollution

Causes

- Oil and Fuel Spills: Leaking oil, fuel, and other fluids from vehicles during maintenance, accidents, or general use can contaminate water sources [11].
- Tire Wear and Road Runoff: As vehicles wear down, particles from tires and road surfaces can end up in nearby waterways, polluting water bodies.

Remedies

- Stormwater Management Systems: Improving drainage systems to capture and filter road runoff before it reaches water sources.
- Regular Vehicle Maintenance: Ensuring that vehicles are well-maintained to prevent fluid leaks and accidents that could contribute to water pollution.

- Use of Eco-friendly Automotive Fluids: Encouraging the use of biodegradable and non-toxic fluids in vehicles [12].
- Vehicle Wash Regulations:

 Implementing regulations for vehicle washing to ensure that detergents and oils are not washed into storm drains or water bodies.

2.5. Climate Change (Greenhouse Gas Emissions)

Causes

RBIJMR-Rayat Bahra International Journal of Multidisciplinary Research, Vol. 05, Issue 01, June 2025

- Carbon Dioxide Emissions: The combustion of fossil fuels in internal combustion engines contributes significantly to greenhouse gas emissions, leading to global warming [13].
- Fuel Inefficiency: Older vehicles or those with poor fuel efficiency consume more fuel and emit more carbon dioxide (CO₂) per mile.

Remedies

- Incentives for Electric Vehicles (EVs):
 Government should provide tax credits,
 rebates, and subsidies to encourage the
 adoption of EVs, which are carbon-neutral
 over their lifespan.
- Improved Fuel Efficiency: Encouraging manufacturers to improve the fuel efficiency of internal combustion engines through technological advancements, such as

turbocharging, hybridization, and lightweight materials [14].

Carbon Offset Programs: Manufacturers and consumers can invest in programs that offset the carbon emissions from vehicles, such as reforestation or renewable energy projects.

2.6. Resource Depletion (Mining and **Manufacturing**)

Causes

- Raw Material Extraction: Manufacturing vehicles requires large quantities of raw materials, including metals like aluminum, steel, and rare earth elements, which are often extracted through environmentally damaging mining processes.
- **Energy Consumption in Manufacturing:** The production of vehicles particularly in traditional manufacturing plants consumes significant amounts of energy, often derived from non-renewable sources [15].

Remedies

- Sustainable Manufacturing Practices: The automotive industry can focus on using renewable energy sources in manufacturing, such as solar or wind power, and reduce resource waste.
- **Recycling of Materials:** Encouraging the recycling of metals and plastics in the

- automotive industry to reduce the need for mining and extraction of raw materials [16].
- **Lightweight Materials and Design:** Using lightweight materials (e.g., carbon fiber, aluminum) in vehicle design reduces the environmental impact associated with material extraction.

2.7 Traffic Congestion and Urban Sprawl

Causes

- **Increased Demand for Vehicles:** With the rise in population and urbanization, cities face increasing traffic congestion, which leads to higher fuel consumption and air pollution [17].
- **Urban Sprawl:** The expansion of cities into rural areas forces people to rely more on cars for commuting, increasing the number of vehicles on the road.

Remedies

- **Urban Planning:** Promoting compact city development, improving public transport designing walkable systems, and communities to reduce dependency on private vehicles.
- Smart **Transportation Systems: Implementing** intelligent traffic management systems to optimize traffic

flow, reduce congestion, and decrease emissions [18].

Promoting Alternative Transportation:
 Encouraging cycling, walking, and the use of public transportation reduces reliance on private cars and mitigates pollution.

3. Conclusion

In this work, different types of automotive pollution are investigated along with their causes and remedies. It has been found that while the automotive industry contributes significantly to environmental pollution, many of these impacts can be mitigated through innovation, regulation,

and a shift toward sustainable practices. Transitioning to electric vehicles, improving fuel efficiency, and adopting stricter emissions standards are all critical steps in reducing the environmental footprint of the automotive sector. In addition, societal changes, such as improved urban planning and increased public transport use. can reduce the overall environmental impact of transportation. Recycling practices, smart traffic systems and advanced fuel technology can also be helpful in reducing automotive pollution and protecting the environment and human health. This work will help researchers for further improvements and developments in the field.

References

- [1] B. P. Pundir (2001), Vehicular Air Pollution in India: Recent Control Measures and Related Issues in India Infrastructure, Oxford University Press.
- [2] Kirkpatrick, T. Allan (2020), Internal Combustion Engines: Applied Thermosciences, John Wiley & Sons.
- [3] H. Yamagata (2005), The Science and Technology of Materials in Automotive Engines, Woodhead Publishing.
- [4] M. A. DeLuchi (1991), Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity,

- Center for Transportation Research, Argonne National Laboratory.
- [5] Sameer Kumar and Dhruv Kataria (2018), Air Pollution and its Control Measures, Department of Environment Engineering, Delhi Technological University.
- [6] Hardenberg, O. Horst (1999), The MiddleAges of the Internal Combustion Engine,US Society of Automotive Engineers.
- [7] Nunney, J. Malcolm (2007). Light and Heavy Vehicle Technology (4th ed.), Elsevier Butterworth-Heinemann.

- [8] E. A. Anyebe (2009), Combustion Engine and Operations, Automobile Technology Handbook. Vol. 2.
- [9] Lomnicki Slawo, Gullett Brian, Stöger Tobias, Kennedy Ian, Diaz Jim, et al. (2014), International Journal of Toxicology, 33 (1), 3-13.
- [10] Asif Faiz, S. Weaver Christopher and P. Walsh Michael (2020), Air Pollution from Motor Vehicles (Standards and Technologies for Controlling Emissions).
- [11] H. A. Bridgment (2019), Global Air Pollution: Problems for the 1990s, Belhaven Press, London.
- [12] Shay, E. Griffin (1993), Diesel fuel from vegetable oils: Status and opportunities, Biomass and Bioenergy, 4 (4): 227-242.
- [13] Stone, Richard (1992), Introduction to Internal Combustion Engines (2nd ed.), Macmillan.

- [14] J. Heywood (2018), Internal Combustion Engine Fundamentals 2E, McGraw-Hill Education.
- [15] Patrick Miner, M. Smith Barbara, et al. (2024), Car Harm: A Global Review of Automobility's Harm to People and the Environment, J. Transport Geography, 115, 1-17.
- [16] T. Denton (2011), Automobile Mechanical and Electrical Systems: Automotive Technology: Vehicle Maintenance and Repair, Taylor & Francis.
- [17] P. Kumar, B. Imam (2019), Footprints of air pollution and changing environment on the sustainability of built infrastructure, Science of the Total Environment, 671, 201-221.
- [18] Deeplaxmi V. Niture, Vivekanand Dhakane et al. (2021), Smart Transportation System using IOT, Int. J. Engg. and Advanced Technology, 10(5), 434-438.